Preliminary communication

Redox properties of the carbyne, aminocarbyne and η^2 -vinyl complexes *trans*-[ReCl(LH)(dppe)₂][BF₄] (LH = CCH₂Bu^t, CCH₂Ph, CNH₂ or η^2 -C(CH₂Ph)CH₂) and of their parent vinylidene, isocyanide and allene compounds

M. Amélia N.D.A. Lemos and Armando J.L. Pombeiro *

Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Av. Rovisco Pais, 1096 Lisboa Codex (Portugal)

(Received July 29th, 1988)

Abstract

The redox properties of the carbyne-, aminocarbyne- and η^2 -vinyl-(metallacyclopropene) complexes *trans*-[ReCl(LH)(dppe)₂][BF₄] (1; LH = CCH₂R (R = Bu¹ or Ph), CNH₂ and η^2 -C(CH₂Ph)CH₂; dppe = Ph₂PCH₂CH₂PPh₂), as well as of their parent vinylidene, isocyanide and allene complexes, *trans*-[ReClL(dppe)₂] (2; L = C=CHR, CNH or η^2 -CH₂--C=CHPh), have been studied by cyclic voltammetry and controlled potential electrolysis in aprotic media. The results are interpreted in terms of anodically- or cathodically-induced β -dehydrogenation processes of complexes (1), to give the corresponding compounds (2) (in the oxidized or the neutral form), as well as of a reversible dissociation of the former into the latter, in a basic solvent. The electrochemical P_L ligand parameter has been estimated for all these ligands.

The extensive chemistry of carbene and carbyne complexes [1] has involved very few studies of redox properties [2–9], in spite of the promising redox-induced chemistry of their multiple metal-carbon bonded ligands. Only a small number of examples are known, involving either cathodically-induced reactions of these ligands (such as, conformation changes [7] or protonation [8]) or anodic processes with coupled chemical reactions (e.g., vinylidene insertion into a metal-nitrogen bond [9]).

We outline below the results of an explanation of the redox behaviour of some rhenium complexes with a variety of multiple metal-carbon bonded ligands and attempt to obtain information about the net electron-acceptor/donor properties of the latter and on their activation by electron transfer.

In continuation of our interest in the activation of unsaturated carbon species by electron-rich metal sites, we have obtained series of isocyanide and alkyne-derived complexes of the type *trans*-[ReCIL(dppe)₂] (2: L = CNR (R = H [10], alkyl or aryl [11]), =C=CHR (vinylidene, R = alkyl or aryl) [12] or η^2 -CH₂...C=CHPh (phenylallene) [13]). In these complexes, the organic ligand is activated towards β -protonation to give the corresponding aminocarbyne- [10,14], carbyne- [15] or η^2 -vinyl-(metallacyclopropene) [16] species *trans*-[ReCl(LH)(dppe)₂]⁺ (1: LH = CNHR, =CCH₂R or -CH₂C(CH₂Ph)= (denoted as η^2 -C(CH₂Ph)CH₂), respectively). The redox properties of the isocyanide complexes 2 (R = alkyl or aryl) have already been described [11] and now we report a preliminary electrochemical study (by cyclic voltammetry (CV) and controlled potential electrolysis (CPE), at a Pt electrode, in 0.2 M [Bu₄N][BF₄]/THF (NCMe or CH₂Cl₂)) of the other types of complexes in which the organic ligand contains at least one labile hydrogen atom in the β -position (relative to the metal).

All the neutral complexes 2 undergo, in CV, a single-electron reversible oxidation $({}^{I}E_{1/2}^{ox} = -0.26 \quad (L = CCHBu^{1}), -0.16 \quad (L = CCHPh), -0.03 \quad (L = \eta^{2}-CH_{2} - C=CHPh) \text{ or } +0.36 \text{ V} \quad (L = CNH) \text{ vs. SCE})$, which is followed by an irreversible anodic process, at a higher potential $({}^{II}E_{p}^{ox}$ ca. 1.0 V $(L = CCHBu^{1})$, CCHPh or η^{2} -CH₂-C=CHPh) or 1.74 V (detected in NCMe, for L = CNH)]. The low ${}^{I}E_{1/2}^{ox}$ values observed for these complexes are in agreement with the known [11] high electron-richness of the {ReCl(dppe)_{2}} centre.

As expected, the cationic complexes 1 exhibit anodic processes at considerably higher potentials. In fact, the carbyne complexes 1 (LH = CCH₂Ph or CCH₂Bu^t), in NCMe, show a reversible one-electron oxidation in CV at $E_{1/2}^{ox} = 1.60$ or 1.56 V vs. SCE, respectively, whereas irreversible anodic processes are observed for the aminocarbyne or the η^2 -vinyl compounds 1 (LH = CNH₂ or η^2 -C(CH₂Ph)CH₂, at $E_{0/2}^{ox} = 0.90$ or 1.34 V, respectively.

In terms of their net electron π -acceptor/ σ -donor character, the organic LH and L ligands (the estimated values for the P_L ligand parameter of which are given in parentheses) * can be ordered in the following way: CCH₂Ph ($P_L = 0.27$ V) \approx CCH₂Bu^t (0.26 V) > η^2 -C(CH₂Ph)CH₂ (0.22 V) > CNH₂ (0.09 V) > CNH (-0.09 V) > η^2 -CH₂:::C=CHPh (-0.21 V) > C=CHPh (-0.25 V) > C=CHBu^t (-0.28 V). The carbyne ligands are the best net π -electron acceptors, being (together with the η^2 -vinyl and the aminocarbyne) even stronger than carbonyl ($P_L = 0$); however, they are not as strong as acceptors as NO⁺ ($P_L = 1.40$ [17]). In contrast, the vinylidenes (followed by phenylallene) are the poorest net electron acceptor ligands; nevertheless, at the strong π -electron releasing (ReCl(dppe)₂) site they appear to behave as much better acceptors than the related ligating carbenes CXY (X = OR, SR or NRR'; Y = alkyl, aryl, etc.) **, at the much weaker π -donor (Cr(CO)₅) centre. As

$$E_{1/2}^{ox}[\mathbf{M}_{s}\mathbf{L}] = E_{s} + \boldsymbol{\beta} \cdot \boldsymbol{P}_{L}$$

(2)

$$P_{\rm L} = E_{1/2}^{\rm ox} [\rm{Cr}(\rm{CO})_5 L] - E_{1/2}^{\rm ox} [\rm{Cr}(\rm{CO})_6]$$

^{*} The oxidation potential of the first anodic wave for complexes 1 and 2 allowed us to evaluate the net electron π -acceptor/ σ -donor character of ligands LH and L, as measured by the $P_{\rm L}$ ligand parameter, which was estimated by applying eq. 1 [17] (or the analogous one where $E_{p/2}^{ox}$ replaces $E_{1/2}^{ox}$ for the irreversible processes) and the known [11] value of the electron-richness ($E_{\rm s}$ 0.68 V) taking account of polarisability ($\beta = 3.4$) of the binding metal site { $M_{\rm s}$ } = {ReCl(dppe)₂}.

^{**} By considering eq. 2 [17] (which defines P_L) and taking data from the literature [2], one can estimate P_L values for =CXY carbones at the (Cr(CO)₅) site ($P_L(CXY) - 0.60$ to ca. -0.8 V) which are much more negative than those obtained for vinylidenes at the Re¹ centre.

expected, the isocyanide CNH is a slightly weaker net electron donor than CNMe, which, at the same Re centre, is known [11,18] to have $P_L - 0.17$ V.

In solution (mainly in THF, which is considerably basic) complexes 1 undergo a little dissociation (with proton loss) to the corresponding neutral compounds 2, which are fully generated on addition of NEt₃ (for 1, LH = CNH₂ or η^2 -C(CH₂Ph)CH₂) or potassium tri(sec-butyl) borohydride, KB[CH(Me)Et]₃H, (for 1, LH = η^2 -C(CH₂Ph)CH₂ or CCH₂R). Complexes 2 are also formed upon cathodic reduction of solutions of complexes 1 (e.g., at ca. -0.7 V for 1 (LH = CNH₂) with liberation of H₂, which was detected by gas-liquid chromatography).

Moreover, as a result of the single-electron anodic oxidation of the aminocarbyne complex 1 (LH = CNH₂), proton loss occurs to give the isocyanide compound 2 (L = CNH) in the oxidized (+1) form. Such a type of anodic process, involving the expected enhancement of acid strength leading to β -proton elimination, conceivably may also occur with the η^2 -vinyl complex 1 (LH = η^2 -C(CH₂Ph)CH₂), but this could not be confirmed in view of its higher anodic potential relative to that of the irreversible oxidation process of the presumable oxidized allene product. A possibly related chemical reaction is known for [Fe₂(η -C₅H₅)₂(CO)(CNMe)(μ -CO)(μ -CNHMe)]⁺ which, on treatment with Ag⁺ gives [Fe(η -C₅H₅)(CO)(CNMe)₂]⁺, although the authors [19] suggest the involvement of the liberated H⁺ as an oxidant.

The results obtained in the present study (except the anodic behaviour of the η^2 -vinyl complex) are summarized in Scheme 1 where <u>Re</u> represents the (ReCl(dppe)₂) site.

The anodically- or cathodically-induced formation of complexes 2 (in the oxidized or the neutral form, respectively) from the corresponding compounds 1 was recognized by CV, which allowed detection of the characteristic redox waves of the products 2 in the subsequent sweeps. The results were confirmed by CPE, followed in some cases by isolation of the products; the course of the electrolyses was monitored by CV. The reversibility of the chemical 1-2 conversion (deprotonationprotonation reactions) was also demonstrated by CV experiments.

Within the three types of multiple metal-carbon bonded species in complexes 1, the carbyne ligands CCH_2R appear to be not only the strongest π -electron acceptors but also the most stable towards redox induced β -deprotonation. In contrast, the aminocarbyne ligand CNH_2 seems to behave as the weakest π -acceptor, and to exhibit the strongest protic acid character.

Although ligand deprotonation resulting from anodic oxidation [20] and H_2 evolution from cathodic reduction of a coordination compound [21] are known reactions in electrochemistry of organometallic compounds, to our knowledge the

Scheme 1. Redox processes and interconversion of complexes 1 (LH = CCH₂R, CNH₂ or η^2 -C(CH₂Ph)CH₂) and 2 (L = CCHR, CNH or η^2 -CH₂···C=CHPh). (<u>Re</u> stands for (ReCl(dppe)₂)). The anodic process for 1 (Lh = η^2 -C(CH₂Ph)CH₂) is not included.

present study provides the first examples of such types of reactions for carbyne, aminocarbyne or η^2 -vinyl complexes.

Acknowledgements. This work was supported by the Junta Nacional de Investigação Científica e Tecnológica (J.N.I.C.T.) and the National Institute for Scientific Research (I.N.I.C.) The authors also thank Dr. C.J. Pickett (Univ. of Sussex) for a stimulating discussion.

References

- 1 See, e.g., G. Wilkinson, F.G.A. Stone and E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Pergamon Press, 1982.
- 2 M.K. Lloyd, J.A. McCleverty, J.A. Connor, M.B. Hall, I.H. Hillier, E.M. Jones and G.K. McEwen, J. Chem. Soc. Dalton, (1973) 1743.
- 3 E.O. Fischer, M. Schluge and J.O. Besenhard, Angew. Chem. Int. Ed. Engl., 15 (1976) 683; E.O. Fischer, F.J. Gammel, J.O. Besenhard, A. Frank and D. Neugebauer, J. Organomet. Chem., 191 (1980) 261.
- 4 R.D. Rieke, H. Kojima and K. Öfele, Angew. Chem. Int. Ed. Engl., 19 (1980) 538.
- 5 E.O. Fischer, D. Wittmann, D. Himmelreich, and D. Neugebauer, Angew. Chem. Int. Ed. Engl., 21 (1982) 444.
- 6 P.J. Krusic, U. Klabunde, C.P. Casey and T.F. Block, J. Am. Chem. Soc., 98 (1976) 2015.
- 7 C.P. Casey, L.D. Albin, M.C. Seaman and D.H. Evans, J. Organomet. Chem., 155 (1978) C37.
- 8 J.-P. Battioni, D. Lexa, D. Mansuy and J.-M. Savéant, J. Am. Chem. Soc., 105 (1983) 207.
- 9 M. Lange and D. Mansuy, Tetrahedron Lett., 22 (1981) 2561.
- 10 A.J.L. Pombeiro, D.L. Hughes, C.J. Pickett and R.L. Richards, J. Chem. Soc. Chem. Commun., (1986) 246.
- 11 A.J.L. Pombeiro, C.J. Pickett and R.L. Richards, J. Organomet. Chem., 224 (1982) 285.
- 12 A.J.L. Pombeiro, J.C. Jeffery, C.J. Pickett and R.L. Richards, J. Organomet. Chem., 277 (1984) C7.
- 13 D.L. Hughes, A.J.L. Pombeiro, C.J. Pickett and R.L. Richards, J. Chem. Soc. Chem. Commun., (1984) 992.
- 14 A.J.L. Pombeiro, M.F.N.N. Carvalho, P.B. Hitchcock and R.L. Richards, J. Chem. Soc. Dalton, (1981) 1629.
- 15 A.J.L. Pombeiro, A. Hills, D.L. Hughes and R.L. Richards, J. Organomet. Chem., 352 (1988) C5.
- 16 A.J.L. Pombeiro, D.L. Hughes, R.L. Richards, J. Silvestre and R. Hoffmann, J. Chem. Soc. Chem. Commun., (1986) 1125.
- 17 J. Chatt, C.T. Kan, G.J. Leigh, C.J. Pickett and D.R. Stanley, J. Chem. Soc. Dalton, (1980) 2032.
- 18 A.J.L. Pombeiro, Inorgan. Chim. Acta, 103 (1985) 95.
- 19 B. Callan and A.R. Manning, J. Organomet. Chem., 306 (1986) C61.
- 20 See, e.g., J.C. Kotz, in A.J. Fry and W.E. Britton (Eds.), Topics in Organic Electrochemistry, Ch. 3, Plenum Publ. Corp., 1986.
- 21 U. Koelle and S. Ohst, Inorg. Chem., 25 (1986) 2689.